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Executive Summary 
This document provides an overview of the state-of-the-art knowledge in systemic risk 
assessments, focused on the macroeconomic impacts of critical infrastructure failure. 
Various macroeconomic impact models, their development, and their applicability to 
systemic risk assessments are discussed in detail. It satisfies the remit of Task 3.1 within 
the Work Package 3 (WP3) Multi-hazard Infrastructure Risk Assessment for Climate 
Adaptation (MIRACA) project. Through this review, we acknowledge that significant 
research has been done in this field, especially on trade datasets at various scales and 
the continuous evolution of macroeconomic models over time. However, we find several 
limitations that will be addressed through MIRACA. To summarize, firstly, we believe that 
the spatial and economic linkages between the critical infrastructures and economic 
sectors can be modeled more explicitly. Also, the interdependencies between critical 
infrastructures are not always fully considered in existing systemic risk assessments. 
Secondly, there is a data scarcity to model the recovery and adaptive behaviors of 
economic agents. In addition, systemic risks in a multi-hazard context have not been 
explored much. Within MIRACA, we attempt to address these drawbacks and extend the 
boundaries of existing systemic risk assessment research.  
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1. Introduction 
Critical infrastructures (CI) such as power (energy), transportation, water, and 

communication systems are designated as lifeline infrastructures (CISA, 2019) that fuel 
the day-to-day functioning of societies, businesses, and governments (Labaka et al., 
2016). During disasters, the significance of infrastructures becomes evident, particularly 
when a crucial service is disrupted, affecting households, businesses, and other 
infrastructure systems. This may result in far-reaching consequences for both the 
economy and society (Dawson et al., 2018). For example, the eruption of Iceland's 
Eyjafjallajökull volcano in 2010 caused a week-long suspension of Europe's civil aviation, 
disrupting the transportation of perishable goods and causing substantial revenue 
losses in the services industry (Alexander, 2013). Similarly, Hurricane Ian in 2022 
devastated the power systems in Florida. Four million people were left without power 
(DiSavino, 2022) and it took nine days post-landfall to restore the grid (FEMA, 2023). 
Unfortunately, such impacts are projected to worsen on a global scale in the future. 
Studies indicate that climate change disruptions to critical infrastructure within Europe 
alone could increase by tenfold by the year 2100 (Forzieri et al., 2018). To mitigate future 
risks to critical infrastructure, it is essential to have a profound understanding of 
disaster risk to develop robust adaptation strategies.  
 Dawson et al. (2018) identified three broad classifications of critical infrastructure 
risk assessments: (i) asset-level (risk to a single asset) (ii) network-level (risk at a single 
network level) and (iii) system-level risk assessments. Prior to understanding systemic 
risk, we first define ‘system’ as a set of individual elements that exist in relationship with 
one another and produce properties that can only be ascribed to the whole (Westra & 
Zscheischler, 2023). In other words, interaction/dependencies between the elements of 
a system lead to additional higher-order effects (Barabási & Albert, 1999), which emerge 
only when studied holistically as systems and not as individual elements. Systems exist 
in a hierarchy and the complexity of the systems increases when moved up the 
hierarchy, where the system’s properties depend more on the organization of the 
elements rather than the actual properties of the isolated elements (Hochrainer-Stigler, 
2020). A hierarchy of systems in the context of CI is shown in Fig.1. In general, systemic 
risk arises out of complex-cascading effects between the interconnected elements 
(Hochrainer-Stigler, 2020). Helbing (2013) defines systemic risk as ‘the risk of having not 
just statistically independent failures, but interdependent, so-called cascading failures 
in a network of N interconnected system components’. The failure or perturbations in 
one of the infrastructures can cascade into its dependent infrastructures and economic 
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sectors leading to a complete system failure e.g., the 2003 Northeast America Blackout 
(Anderson et al., 2007). In this deliverable, we refer to systemic risk as the risk associated 
with the top-level systems in the hierarchy (see Fig.1.) such as economic  (supply-chain 
disruptions) impacts (Koks, 2022). The rest of the document focuses on the impacts of 
natural hazards caused by CI failure resulting in business downtime and supply-chain 
disruptions.  

 
Fig.1. Assets, networks, and systems within MIRACA.  

2. Definitions and Concepts 
For MIRACA, we follow the definitions per the ‘D1.2-Handbook of Multi-hazard, Multi-

Risk Definitions and Concepts’ (Gill et al., 2023) of the MYRIAD-EU project. The definitions 
and concepts are grouped into three major categories namely the hazard definitions, 
infrastructure definitions, and disaster impact/risk definitions. For definitions, refer to 
Section 2 of Deliverable 1.1. 
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2.1 Classification of disaster impacts 
The consequences of disasters can be broadly classified into four groups, based 

on two different criteria (De Moel et al., 2015; Jonkman et al., 2008). They are (i) direct 
and indirect impacts and (ii) tangible and intangible impacts. Direct impacts refer to the 
impacts observed within the spatial extent of the hazard (e.g., damaged buildings within 
the flooded area), and indirect impacts refer to the consequences outside the hazard 
extent (e.g., business disruption to a firm because of power failure from a substation 
being flooded). Tangible refers to the impacts which can be assigned a monetary value 
(e.g., the damage value of failed components) whereas intangible impacts cannot be 
monetized (e.g., casualties). One other system of disaster impact classification exists 
based on the time-dependent nature of the impacts namely the stock and the flow 
losses (Rose, 2004a). Stock losses refer to the physical damages that occur at the onset 
of the disaster (at a single point in time), also referred to as asset damages / direct 
losses. Flow losses are associated with the service disruptions arising out of stock 
damage which depends on the time of recovery from the disaster, also referred to as 
indirect losses.  

 

Fig.2. An explanatory figure to demonstrate the impacts of natural hazards. The blue 
polygon indicates the spatial extent of a flood event. The substation and the 
telecommunication tower within the flood extent are non-functional and do not provide 
their service to the factories (red and partially red) which in turn brings down the 
production of the economic sectors (Sector 1 in this case). The damaged links are 
indicated in red dashed lines.  
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Direct losses have been the major interest of the engineering and catastrophe 
insurance community in the past years. Tools such as fragility (Porter et al., 2007) and 
vulnerability models (Porter et al., 2001) are used to estimate asset damages. However, 
reporting only the direct losses in disaster impact analysis ignores the indirect effects 
(i.e., service disruptions and business downtime) which are found to be substantial 
(Rose, 2004b). The estimation of indirect losses (e.g., economic impacts) is a more 
complex analysis compared to that of stock losses because of the underlying 
interactions and interdependencies between the infrastructures, the business assets, 
and the economic sectors.  

Fig.2. presents a demonstration of the stock and flow losses. Consider the real-
world economic system to be three-tiered. The first and the base tier consist of critical 
infrastructures which supply their services to beneficiaries such as households and 
factories, which form the second tier. The third tier comprises the macro-economic 
sectors which build upon the products and services supplied to it from the second tier 
e.g., the manufacturing sector relying on automobile production factories. Let us 
assume that during a flood event, a substation, a telecommunication tower, and an 
industrial building (red) were flooded. The physical damage to the components (and the 
associated repair/replacement cost) of the above-mentioned assets fall under the 
category of stock losses. Service disruptions from the telecommunication and power 
infrastructure will disrupt business activities in factories which further affects the 
corresponding economic sector. The economic sectors interact among themselves 
through demand and supply chains (e.g., the manufacturing sector depends on the 
mining sector for iron ores) causing a greater ripple effect (not depicted in Fig.2.). As 
the system recovers with time, the business activities and the system bounces back to 
the business-as-usual state. Such losses that occur as a result of service disruption 
from stock damage and prolong for a while are examples of flow losses. In addition, 
although being outside the flood extent, the industrial building in partially red shade 
suffers business downtime because of service disruption. This is an example of indirect 
impact. The above-mentioned impact propagation from power infrastructure disruption 
to loss in production of businesses, and hence reduced output of the sector affects the 
supply side of the economy. This is termed as supply-side impact. On the other hand, 
after disasters, the consumption pattern of people (and businesses) might shift 
resulting in demand changes e.g., an increase in demand for reconstruction and health 
care sectors. This contributes to the demand-side impact.  
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The impacts of disasters on economies can also be categorized along a temporal 
dimension as short-run and long-run effects. Short-run impacts generally include near-
term fluctuations in economic activities (positive and negative responses) depending 
on the nature of the disaster and recovery efforts. For example, disruptions in the flow 
of goods and services, shifts in demand and supply, and increased demand for 
reconstruction activities can be interpreted as short-term effects that persist from 
months to a few years after the disaster. Long-run impacts, however, refer to sustained 
effects on economic growth, and structural changes, often arising from major 
catastrophes. Smaller and localized events like minor floods may not significantly alter 
long-term growth patterns, whereas larger-scale disasters of high intensity such as 
earthquakes, hurricanes, or tsunamis can have lasting consequences e.g., the 1995 Kobe 
Earthquake in Japan inflicted substantial changes in the economic structure of Kobe 
economy (Okuyama, 2014). 

2.2 Cl recovery and business downtime 
 As shown in Fig.2., hazards affect the critical infrastructures and the business 

simultaneously. Even the business that lies outside of the hazard extent might be 
affected by service disruptions from CIs or the lack of inputs from other businesses that 
are directly affected by the hazard. This leads to business downtime i.e., the time taken 
by business to recover from the shock. Downtime of businesses is one of the major 
drivers of macroeconomic impacts of disasters (higher order effects) e.g., downtime of 
automobile firms reduces the supply of the manufacturing sector to other economic 
sectors. Studies have shown that the macroeconomic impacts are highly sensitive to 
the recovery duration and the recovery paths (Koks et al., 2016; Koks & Thissen, 2016). 
However, there is no common agreement on how the economy revives after disasters (Li 
et al., 2013), which forces the impact modelers to assume the recovery duration and 
recovery paths. Chang (2010) discussed three definitions of recovery such as returning 
to pre-disaster conditions, attaining what would have occurred ‘without’ the disaster, 
and reaching a stable state different from the above. Also, downtime is a function of 
direct damage to the business e.g., the higher the damage to the buildings in which the 
business operates, the higher its repair time. This section presents some of the available 
restoration/downtime models of critical infrastructures and businesses.  

Karagiannis et al. (2017) provided a detailed report on the power grid recovery 
after earthquake and flood hazards. The study discussed various factors that resulted 
in increased recovery of assets e.g., damage to heavy equipment, poor access to the 
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damaged areas, and foundation failures. The results of the study suggested that the 
restoration time of power grids is in the range of one day to three weeks, however high 
impact events can delay the restoration in the scale of months e.g., hurricane-driven 
floods. He & Cha (2018) proposed a graph theory-based framework to model the 
recovery of interdependent infrastructure networks. The methodology is based on the 
Dynamic Inoperability Input-Output model (refer to Section 3.5.1) (Lian & Haimes, 2006) 
by modeling the interdependencies at the facility level (e.g., communication towers, 
power substations). The recovery time of critical infrastructure assets were estimated 
as a function of its damage/loss ratio (FEMA, 2003). Graph theory metrics such as the 
size of the largest cluster, and network efficiency were used to measure the operability 
of the interconnected infrastructure system. Mitoulis et al. (2021) proposed a 
restoration model for bridges subjected to floods. Experts were asked to fill out a 
questionnaire with the minimum (structural restoration time) and maximum (traffic 
reinstatement) time required for twenty-three possible restoration works on bridges 
after flooding. Some of the restoration tasks include re-alignment of bearings, debris 
removal, and so on. The dependence of the restoration time on the severity of damage 
was captured using weighing factors for each damage state. Using this data, the study 
arrived at traffic restoration models for bridges with varying damage levels and 
foundation types, which are greatly useful in understanding the macroeconomic 
impacts of transportation network failures. Researchers have also worked on alternate 
approaches to model the restoration of critical infrastructures. For example, Román et 
al. (2019) developed a methodology based on satellite nightlight data to understand the 
recovery of power infrastructures. In the absence of utility data, such openly available 
data is quite promising. The recovery of the power infrastructure at any time is 
quantified as the ratio of radiance before the hurricane to the radiance at that instant 
of time. This method was applied to Puerto Rico after Hurricane Maria. The results 
revealed that the rural households (i.e., with lesser density of houses) suffered a lag in 
restoration compared to the urban areas.  

In the past, business recoveries had been studied using post-disaster surveys 
and engineering-based approaches. Few of the selected business downtime studies are 
discussed in detail. Yang et al. (2016) proposed a probabilistic methodology for 
estimating business interruption losses in economic sectors. The authors collected data 
on business downtime estimates after the Tokai heavy rains in Japan in 2000. The firms 
were broadly segregated into two major sectors, manufacturing (which includes raw 
materials, processing, assembly, and livelihood) and non-manufacturing sectors (whole-
sale-retail, construction, and services). The methodology utilized two unique models 
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namely the functional fragility curves (FFC) and the accelerated failure time model (AFT) 
to estimate business downtime losses. FFC linked the hazard intensity (e.g., inundation 
depth) to the production loss (% of production reduced). On the other hand, AFT 
estimated the exceedance probability of a recovery time, given an inundation depth. 
Combining these models provided business downtime (BI) loss estimates.  The authors 
clearly stated that BI losses are no replacement for macroeconomic impacts, but rather 
the repair times obtained should be combined with macroeconomic analysis.  

Liu et al. (2022) collected a time series of data on post-disaster recovery after 
the Great East Japan Earthquake in 2011. The recovery data consisted of production 
levels at days 1, 14, 31, 61, and 184 (6 months) after the disaster. The study showed two 
important conclusions. Firstly, the firms contributing to manufacturing sectors 
recovered faster than their counterparts (i.e., non-manufacturing e.g., services). 
Secondly, the recovery of the firms depended on the financial conditions/constraints 
after the post-disaster recovery. For, the firms with loan applications rejected and 
delayed insurance claims had prolonged recovery periods. In a similar study, Liang et al. 
(2023) collected recovery data from small businesses from 39 counties after 2017 
Hurricane Harvey. The survey was conducted online and the responders (620 
respondents) were primarily the decision-makers of the firms. The study provided an 
arrival rate function that gives the fraction of firms back to the pre-disaster level after 
a certain time. The firms that suffered major building damages took longer to recover 
back. For example, only 9% of the businesses with building damages resume operations 
within 3 months. Also, the arrival rate of resilient firms (firms with flood barriers, 
emergency generators, etc.) was faster than their counterparts. 
 Conducting surveys and interviews to understand the recovery of businesses 
may not always be a feasible option. In addition, they are time-consuming and costlier. 
For such scenarios, alternate methods exist. Olmez & Deniz (2023) applied an assembly-
based approach (engineering–based) to model the vulnerability of industrial buildings in 
Turkey. An industrial building is disassembled into its components that are vulnerable to 
floods. The failure state of the components is identified by comparing the capacity of 
these components against flood actions (e.g., inundation depth, flood velocity) and the 
actual flood loads on the components. Depending on the damage to the components, a 
repair time is allotted based on a repair cost and time database e.g., RS means (RSMeans, 
2013) provided the time required to repair the component. The accumulation of repair 
times of the components gives an estimate of the total repair time required by the 
industrial building. The study provided time-element vulnerability curves (i.e., the curves 
relating the inundation depth with repair times) under slow-rise and flash flooding 
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scenarios. Eyre et al. (2020) used Facebook posts of businesses as a proxy to identify 
their downtime after a disaster. Businesses post advertisements on their Facebook 
pages. After a disaster, the social media activity of these businesses decreased which 
returned to its normal trend after recovery. This approach was validated against hazard 
events in Nepal (2015  Gorkha Earthquake), Mexico (2017 Chiapas Earthquake), and 
Puerto Rico (Hurricane Maria 2017). Sousa et al. (2022) developed a comprehensive 
framework for the assessment of indirect economic losses based on the impact of 
business interruption and interdependency between the different economic sectors. 
The proposed framework was applied to the precast reinforced concrete buildings in 
Portugal highlighting the importance of considering indirect losses in the seismic risk 
assessment of industrial buildings. The estimation of the indirect losses was carried out 
based on the procedure described in HAZUS (FEMA, 2003), following principles of input-
output flow (Galbusera & Giannopoulos, 2018), but adjusted to the Portuguese reality 
based on indicators collected from the Portuguese Statistical Office 
(http://www.ine.pt/). 

3. Macroeconomic impact modeling 
Different methods have been widely used to understand the macroeconomic 

impacts of disasters by economists in the past (Kelly, 2015). They are input-output (I-
O), computable general equilibrium (CGE), and econometric methods. I-O and CGE 
methods have been commonly used to understand supply chain disruptions and the 
reduction of economic outputs during disasters (Koks et al., 2016). On the other hand, 
the econometric models use past (historical) data to predict the future impacts of 
disasters. The rest of the section discusses the I-O, CGE, and econometric methods and 
relevant studies in detail. 

3.1 Traditional Leontief I-O method 
I-O methods are based on the analytical framework developed by (Leontief, 1936). 

I-O models represent the flow of goods and services between different sectors of the 
economy. Sectors (e.g., manufacturing, agriculture) are the producers of goods in the 
economy. The produced goods are consumed among the sectors themselves and are 
supplied to cater to external demands (e.g., household consumptions, government 
purchases, and exports). Value added represents the additional expenditure to the 

http://www.ine.pt/
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producers (e.g., employee compensation, imported goods, and taxes). The monetary 
values of these intersectoral transactions are recorded and compiled in a tabular form.  
A typical input-output table of a two-sector economy resembles Fig.3. Each row 
represents the distribution of a sector’s output and each column represents the 
distribution of a sector’s consumption, to and from different sectors respectively. 

The I-O tables are mathematically represented using a system of linear equations 
𝑥𝑥 = 𝐴𝐴𝐴𝐴 + 𝑓𝑓 . The array 𝑥𝑥 represents the total output of each sector. The matrix 𝐴𝐴 
represents the technical coefficients of the inter-sector transactions. Each element 𝐴𝐴𝑖𝑖𝑖𝑖 
represent the value of goods/services from sector 𝑖𝑖 required to produce a unit value 
output of sector 𝑗𝑗. The array 𝑓𝑓 represents the final demand for the goods and services 
of each sector. Subsequently, the relationship between the output vector 𝑥𝑥 and the final 
demand vector 𝑓𝑓 can be modeled as 𝑥𝑥 = (𝐼𝐼 − 𝐴𝐴)−1 × 𝑓𝑓. Here 𝐼𝐼 represents the identity 
matrix (i.e., a diagonal matrix with all diagonal elements equals 1). The term (𝐼𝐼 − 𝐴𝐴)−1 is 
known as the Leontief inverse (or) total requirements matrix, usually represented by the 
symbol 𝐿𝐿. The elements of the matrix 𝐿𝐿𝑖𝑖𝑖𝑖 represent the rate of change in the output of a 
particular sector 𝑥𝑥𝑖𝑖 to the demand from a sector 𝑓𝑓𝑗𝑗 . Mathematically, it can be 
represented as 𝐿𝐿𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑥𝑥𝑖𝑖/𝜕𝜕𝑓𝑓𝑗𝑗 . This formulation facilitates the study of the effect of 
demand shocks on the output of individual sectors.  For a detailed explanation of the I-
O formulation, refer to Miller and Blair (2009) .   

 
 Sector 1 Sector 2 Demand Total Output 

Sector 1    

Sector 2   

Value added     

Total Outlays     
 

Fig.3.  A representative two-sector input-output table (A simplified figure of Figure 1.1 
from Miller and Blair (2009)) 
 

3.2 CGE method 
CGE methods model the economy-wide linkages between the consumers and the 
producers and their behaviors (Burfisher, 2016).  The term ‘computable’ refers to the 
model's capacity to quantify the effects of an economic shock, and the term ‘general’ 
refers to the model’s wholesome nature to incorporate all the aspects of economic 
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activity such as production, consumption, taxes, prices, savings and the term 
‘equilibrium’ refers to the balance of supply and demand. A simplistic representation of 
a CGE model can be represented by  

𝑆𝑆(𝑃𝑃𝑖𝑖 ,𝑃𝑃) = 𝐷𝐷(𝐼𝐼,𝑃𝑃) = 𝑄𝑄 
where 𝑆𝑆 represents the supply (production side of the economy) which is a function of 
the price of inputs 𝑃𝑃𝑖𝑖 and the market price of the commodity 𝑃𝑃. Similarly, 𝐷𝐷 represents 
the demand (consumption side of the economy) which is a function of consumer income 
𝐼𝐼 and the price of the commodity. The firms produce 𝑄𝑄 quantities of the commodity such 
that the market is in equilibrium. Unlike I-O methods, the CGE functions are non-linear 
and contain elasticity parameters that allow for input substitutions e.g., Cobb and 
Douglas production functions. The impacts of natural hazards are estimated by 
quantifying the supply disruptions of goods and services, while in tandem considering 
the input and import substitution possibilities for the intermediate and final demands 
(Botzen et al., 2019). The general structure of a CGE model consists of model parameters, 
variables, and economic equations describing the economic processes. These equations 
are organized into blocks related to consumption, production, capital and labor, 
international trade, and taxation. For a detailed description of the CGE models, refer to 
Burfisher (2016).  

3.3 Comparison of I-O and CGE  
 The I-O and CGE methods have the following major differences in the context of  
disaster impact analysis (Koks et al., 2016):  
 
Equilibrium: The major difference between the formulation of I-O and CGE methods is 
that the former does not consider general equilibrium and the latter does. General 
equilibrium refers to an enclosed economic system in which all produced goods are 
utilized and all the earned income is expended on various products through savings and 
investments. The general equilibrium approach provides a comprehensive depiction of 
the entire economy and takes into account both monetary and non-monetary 
transactions. Traditional I-O models do not consider all the factors of the economy (e.g., 
change in price of goods, income). 
 
Substitution Effects:  The fixed coefficients of traditional I-O methods do not allow 
substitution possibilities which is likely to happen in the aftermath of a disaster. For 
example, after a disaster, producers (industries) tend to substitute their lost inputs from 
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new suppliers in unaffected regions i.e., inter-regional substitution.  Also, producers can 
substitute the factors of production such as replacing machinery with manual labor in 
the event of a power shutdown after disasters. Such substitution effects cannot be 
modeled using traditional I-O methods. However, CGE models are flexible enough to 
incorporate substitution effects via elasticity parameters. 
 
Supply-side constraints: I-O models are not equipped to handle supply-side disruptions. 
The disaster impacts are modeled using simulated reductions on the demand side e.g., 
(Rose et al., 1997). On the other hand, CGE models can handle reduced production 
capacities.  
 
Applicability to disaster impacts:  Being rigid and linear, I-O-based models don’t include 
the effects of post-disaster resilience measures e.g., substitution of commodities. 
Hence, they overestimate the disaster impacts. On the other hand, CGE models allow 
short-term substitution effects which are not relevant in the context of disaster 
scenarios and may lead to underestimation of losses (Hallegatte, 2014). To summarize, I-
O models are considered to reflect the short-term effects of a disaster and CGE models 
are more equipped to capture the long-term effects (Rose, 2004a). Table 1. provides a 
summary of the above discussion.  
 
Ease of use: IO models are best known for their simplicity and their capacity to directly 
depict the economic interconnections among sectors, thereby enabling the derivation 
of higher-order effects. In contrast, CGE models are more intricate as they consider 
supply-side effects and offer greater flexibility due to their nonlinearity in inter-
sectorial deliveries, substitution effects, and changes in relative prices.  

Table 1.  A comparison of I-O and CGE methods. This table is an amalgamation of tables 
(Table 1) from Balakrishnan et al. (2022) and Koks et al. (2016). 

Attribute I-O CGE 
Equilibrium condition Partial General 
Substitution effects Not possible Possible 
Mathematical model 
type Linear Non-linear 

Supply-side disruptions Not possible Possible 
Time horizon Short-run Long-run 
Disaster impact 
estimation Overestimation Underestimation 
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Model development 
efforts 

Comparatively 
less 

Immense data collection 
and calibration required 

 

3.4 I-O and CGE-based disaster impact studies 
Several studies have used I-O and CGE-based methods to model the impacts of 

disasters. Some of the selected studies are discussed in detail here.  
 

I-O:  Some of the below-selected studies have used extended versions of the traditional 
I-O methodology e.g., modeling the recovery after disasters (Okuyama, 2004), and 
extension to other regions (interregional I-O tables (Bouwmeester & Oosterhaven, 2017). 
Okuyama (2004) used the I-O methodology to understand the impacts of the Great 
Hanshin Earthquake, in Japan. The I-O table published by the Ministry of International 
Trade and Industry, Japan was used. After the earthquake, there was an increase in 
demand in the construction sector (i.e., reconstruction demand). Two distinct scenarios 
were modeled with and without including reconstruction demand, and positive impacts 
in gross output were observed when reconstruction demands were taken into account. 
MacKenzie et al. (2012)  studied the effect of the 2011 Japan earthquake on international 
production sectors. The study proposed a novel formulation to perform multi-regional 
analysis using I-O tables published by the Organization of Economic Cooperation and 
Development (OECD, 2011). The study included 18 different countries from Asia and 
South America which contribute to approximately 66% of Japan’s imports. The analysis 
revealed that Japan’s imports increased post-disaster by 10.7% which was able to 
satisfy 73% of the deficit between demand and production. Okuyama (2014) revealed 
that disasters not only affect the total economic output after a disaster but also 
change the economic structure because of recovery and reconstruction activities. As a 
case study, the study investigated the same after the 1995 Kobe earthquake by 
decomposition techniques e.g., the total output of Kobe region is decomposed into 
output for regional final demand and output for exports. A permanent decline in regional 
output is observed as a result of population decline and loss of lives resulting in demand 
reduction. Xia et al. (2018) studied the macroeconomic impacts of an extreme heat wave 
event in Nanjing, China using a supply-driven I-O model. The productivity losses in labor 
hours induced by the heat waves are translated to its equivalent measure of percentage 
reduction in value added in the I-O table. The results show that this 14-day event 
produced an economic loss equivalent to 3.5% of Nanjing’s yearly gross value of 
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production. Recently, Huang et al. (2022) applied the I-O methodology to evaluate the 
post-disaster impacts of the 2008 Sichuan earthquake and identified that economically 
underdeveloped provinces suffered more losses.  
 
CGE: Rose & Liao (2005) used CGE models to estimate the economic impacts of water 
system disruption after a major earthquake. The novelty of this study is that it linked 
the resilience (or) post-event adaptation measures (e.g., water conservation, backup 
supplies) to production function parameters. Tirasirichai & Enke (2007) used CGE models 
to estimate the indirect economic impacts of bridge damages during an earthquake. The 
framework was tested within the St. Louis metropolitan area (U.S.A) for a hypothetical 
earthquake. The effect of bridge damages was converted to increased cost of travel. 
The modified travel costs were input into the CGE models to estimate the indirect 
impacts. For this hypothetical scenario, the indirect economic losses were 1.28 times 
higher than direct losses due to bridge damages. In a very similar study, Tsuchiya et al. 
(2007) evaluated the economic loss due to highway and railway disruptions combined in 
Japan using CGE models. Rose et al. (2016) applied CGE models to understand the 
economic impacts of port disruptions (Port of Los Angeles and Port of Long Beach) due 
to Tsunamis in California (U.S.A). This study also evaluated different economic resilience 
measures that can reduce the total impacts by 80 percent. Kajitani & Tatano (2018) 
applied a CGE model to estimate the short-term economic impacts (in a time scale of 
months) after a disaster. The elasticity parameters in the model for different sectors 
(e.g., automobile) are selected based on a calibration process using real-time data after 
the 2011 Japan earthquake. The selected parameters were either zero or nearly zero (i.e., 
elasticity equals zero refers to zero substitution possibilities indicating Leontief 
production function) for all the sectors indicating lesser substitution possibilities in the 
short term. This reiterates the discussion in section 3.3.  CGE models have also been used 
to understand and quantify the indirect economic impacts of floods. For example, Gao 
et al. (2020) quantified the effect of a typhoon-induced flood on macroeconomic 
indicators such as GDP, commodity prices, etc. Also, floods damage the transport 
infrastructure and increase the cost of commodities. Using a spatial CGE model, Yang et 
al. (2023) analyzed the economic impacts of flooding-induced traffic disruptions in 
Hubei province, China. The study revealed that output losses increase by 80% when 
transport-induced losses are captured. Also, sectors such as storage, transportation, 
processing, and assembly manufacturing are likely to be more affected. Bachner et al. 
(2023) used a CGE model to understand the supply chain disruptions due to floods in 
Austria. The study utilized national datasets that contain the geospatial distribution of 
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capital according to industrial sectors, which facilitates the estimation of sector-
specific capital damages. The capital damages are negated from the capital 
accumulation equation of the model via which flood impacts are induced. The results 
suggested that capital owners and high-income populations are strongly affected in 
the short term whereas lower-income populations suffer in the long-term due to 
increased price levels. 

3.5 Hybrid models 
 CGE models represent the true economic system better. However, constructing 
and calibrating a CGE model requires large amounts of data which may be cumbersome. 
Also, in developing countries where data availability is limited, the development of a CGE 
model may be non-viable. On the other hand, I-O models lack the flexibility of the CGE 
model. Researchers have developed hybrid models that retain the basic definitions and 
theoretical rules of I-O modeling with added flexibilities of CGE models. Although not a 
comprehensive review of existing hybrid models, a few representative models and their 
relevant studies are discussed below. 

3.5.1 IIM 
The inoperability input-output model (IIM) by Haimes & Jiang (2001) was originally 

developed to model the interdependencies between critical infrastructures. Later, Lian 
& Haimes (2006) extended the model to be dynamic (i.e., time-varying impacts with 
recovery) termed as Dynamic Inoperability Input-Output model (DIIM). The term 
‘inoperability’ refers to the reduced functionality of the system/sector. The 
interdependencies between the sectors are taken into account via the inoperability 
indices compiled in an interdependency matrix ‘A’ (e.g., an element 𝑎𝑎𝑗𝑗𝑗𝑗 = 0.3  indicates 
Sector 𝑗𝑗 is 30% inoperable if Sector 𝑖𝑖  is 100% inoperable). In its elementary form, the 
model is a set of differential equations where each equation represents the rate of 
change of a sector’s output with time. The model was demonstrated to estimate the 
economic losses of a terrorist attack in Virginia. Further, Akhtar & Santos (2013) 
developed the DIIM model to include the recovery of the workforce. Using DIIM, Thekdi & 
Santos (2016) studied the supply-chain impacts of port vulnerabilities subjected to 
hurricanes, terrorist attacks, and labor force strikes. Recently, Chen et al. (2022) applied 
DIIM to understand the costs of power outages in China. Being used widely in several 
studies, the model still holds several limitations. The mathematical framework of this 
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model relies on interdependency and other similar (capital coefficient matrix, industry 
resilience coefficient matrix) matrices. Deriving the elements of these matrices is a 
complex task with huge uncertainties.  Secondly, the model ignores the geo-spatial 
connectedness between infrastructures and businesses. Also, the model is not flexible 
enough to take into account the adaptive behaviors of economic agents such as 
overproduction, substitution effects, etc.  

3.5.2 ARIO 
The Adaptive Regional Input-Output (ARIO) model was developed by Hallegatte 

(2008). This model brought in major novelties which include incorporating production 
sector capacities and the adaptive behaviors of different economic agents. This model 
disintegrates the final demand vector of the I-O table into local demand, export demand, 
and reconstruction demands. Disasters are simulated in the economic system via 
increased reconstruction demands and reduced production capacities.  Different 
adaptation behaviors are parametrically modeled. First, the model introduces a rationing 
scheme in the aftermath of a disaster where inter-sector demands are given priority. 
Secondly, the adaptation behavior of consumers to delay their purchases or export 
them from external suppliers is taken into account. Finally, the overproduction 
capacities of sectors and the price changes due to demand surges are also considered. 
The model was further extended to handle inventory flexibilities by Hallegatte (2014). 
This model is widely used to understand the economic impacts of disasters. Hallegatte 
(2008) used ARIO to study the impacts of Hurricane Katrina affecting the state of 
Louisiana. Interestingly, the study explores the possible scenarios of scaled-up direct 
damages of Hurricane Katrina and identifies that indirect losses increase non-linearly 
with direct losses beyond a threshold (50 billion USD). Zeng et al. (2019) developed a 
flood footprint assessment model using ARIO to assess the indirect impacts of flood 
events. Very recently, Hu et al. (2023) used ARIO models to estimate the economic 
impacts of a flood event combined with export restrictions during a pandemic. However, 
the model being regional fails to capture the spillover effects of disasters into other 
regions. Studies have found that multi-regional effects are substantial which not only 
represent the losses but also the gains in the other regions (Koks & Thissen, 2016; 
Schulte In Den Bäumen et al., 2015; Wenz et al., 2014). Also, Hallegatte (2008) 
acknowledges that the parameters of adaptive behaviors are difficult to calibrate. In a 
recent study, Liu et al. (2023) proposed a multi-regional ARIO model (termed as ‘AMRIO’) 
to analyze the indirect economic losses of rainstorm events in China. The model allowed 
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inter-regional substitution of products/services from the same industry in other regions. 
The results indicated a non-linear relationship between direct and indirect economic 
losses. In addition, the study proved that indirect economic losses of high-impact 
rainstorm events can be twice that of direct losses. Guan et al. (2020) applied an 
extended ARIO model to study the supply chain effects of different Covid-19 lockdown 
scenarios. The lockdown scenarios varied in duration (2,4 and 6 months), strictness i.e., 
the restrictions applied to transport and labor availability (20%, 40%, 60%, 80%), and 
spatial spread (e.g., lockdown only in China, only in USA and Europe and all countries). 
The study used GTAP v10 (Aguiar et al., 2022), a  global trade database to model the 
supply chain transactions between countries. The existing ARIO model is improved 
further to incorporate substitution of products from the same sector in different 
regions and the clients are allowed to choose suppliers based on their maximum 
capacity. The results revealed that the lockdown losses are more sensitive to the 
duration of the lockdown than the strictness. Also, the impact of the lockdown imposed 
in Europe and the United States is relatively high. For example, the economic loss of a 
lockdown scenario only in Europe and the United States (for 6 months, and 80% 
strictness) is nearly 75% of the loss had the same lockdown conditions been imposed 
over all countries.  

3.5.3 Optimisation approaches 
 Oosterhaven & Bouwmeester (2016) developed a novel optimization-based 
methodology to simulate disruptions in the inter-regional I-O tables. The method aims to 
reduce the information gain between the post and pre-event I-O tables while holding 
onto the constraints of I-O analysis (e.g., supply equals demand). The methodology was 
later used by researchers to understand the impacts of trade disruptions between 
countries (Bouwmeester & Oosterhaven, 2017) and natural hazards (Oosterhaven & 
Többen, 2017). Koks & Thissen  (2016) developed a dynamic Multi-Regional Impact 
Assessment (MRIA) model to study the economic impacts of disasters on the regional 
economies of Europe. The model addressed/improved upon three key aspects in the 
economic impact analysis of disasters. Firstly, the model is multi-regional which enables 
the study of the impacts outside the disaster-affected region. Also, it allows for 
substitution possibilities within regions resulting in positive gains if other regions 
increase their supply to cater to the demands of disaster-hit regions. Secondly, 
disasters affect the production capacities in the affected region i.e., a supply-side 
disruption. The model translates the disaster impact analysis into an optimization 
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problem to minimize the production values and take in the supply-side and import 
constraints explicitly. Finally, the model accounts for production inefficiencies through 
non-demanded byproducts being supplied into the market. This model requires supply-
use tables as its inputs (Thissen et al., 2013). The supply table records the value of 
products supplied into the economy by different economic sectors and imports. The 
use table records the value of products consumed by different economic sectors, 
exports, and so on. The model was illustrated by applying it to flood hazard impacts in 
Rotterdam. Koks et al. (2019) used MRIA to understand the macroeconomic impacts of 
future flood events in Europe. The indirect losses were segregated into first-order 
(losses to sectors within disaster-hit regions) and second-order (losses to sectors 
outside disaster-hit regions) for different climate scenarios. The results of second-order 
effects indicated positive gains in sectors outside the disaster extent. In another study, 
Koks et al. (2019) applied the MRIA model to understand the economic impacts of power 
service disruptions due to flooding in the United Kingdom. The results indicate that 
losses rise threefold when infrastructure failure is considered in the economic impact 
analysis. Given the merits of MRIA and its wider use, it can only be used to estimate the 
short-run economic impacts of disasters. The long-term effects of disasters (e.g., price 
change of commodities) are out of the scope of MRIA.  

3.5.4 ABM based approaches 
Agent-based modeling (ABM) approaches simulate the behavior of individual 

economic agents to assess the macro-level economic impacts. General equilibrium 
models (e.g., CGE based) assume that the agents optimize rationally whereas ABMs take 
into account the agent’s heuristic behavior to make decisions and other boundary 
constraints (Poledna et al., 2023). Few such agent-based modeling approaches are 
discussed here. Acclimate is a multi-regional dynamic model to model the economic 
disruptions of the global supply-chain network using EORA input-output tables (Lenzen 
et al., 2012). The first version of the model was developed by Bierkandt et al. (2014). The 
model considers the behavior of economic agents from both the production and the 
consumption sides. External perturbations to the production side of an economic sector 
are forced via a parameter ‘production ratio’ which then is used to reduce the 
production output of the economic sectors. Both production and consumption sides are 
coupled with their pre-disruption storage capacities. An added novelty of this model is 
that it includes the time delay induced by the transport of goods. Subsequently, Wenz 
et al. (2014) modified the model to include demand-induced backward dynamics which 
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was not available in ARIO. The earlier ‘production ratio’ was revised to ‘target product 
ratio’ which encompasses the aspects of overproduction and demand redistribution. 
Further, Otto et al. (2017) reformulated the production level of firms by assuming an 
optimized profit maximization scheme. The authors demonstrated the model (and its 
subsequent developments) for a hypothetical production loss in Japan’s manufacturing 
sector. However, the model does not allow for substitution of goods for production. Also, 
the parameters of agent’s behavior (e.g., assumed storage capacities of production 
sites) and the supply and demand redistribution patterns after disasters are yet to be 
backed up by studies and data for more precise loss estimates. Willner et al., (2018) 
applied the Acclimate model to simulate the global economic risks of future flooding 
events. Flood hazard maps are overlaid with population maps to identify the fraction of 
the affected population. The population affected is used as a proxy to estimate the 
reduction in production capacities (i.e., perturbation to the Acclimate model). The study 
identified that the total economic loss will increase by 17% in the next 20 years and also 
emphasized that balanced trade relations are essential for economic resilience against 
future climate events. Poledna et al. (2023) proposed an ABM model for small economies 
(at a national level) by utilizing data from national accounts, sector accounts, I-O tables, 
and census data. The behavior/decision of the agents (e.g., firms) is assumed to depend 
on the economic growth rate and inflation. The developed model was applied to 
understand the economic impacts (e.g., GDP, unemployment rate) of Covid 19 lockdown 
in Austria. The model estimated that the real GDP will decrease by 6 percent points and 
the unemployment rate will increase by 2.4 percent points. Also, Bachner et al. (2023) 
utilized the model by Poledna et al. (2023) to estimate the economic impacts of flood 
events of different return periods in Austria. 

3.5.5 Comparison of hybrid models 
While all the above-mentioned models share the common goal of estimating the 

economic impacts of a disruption, the outcomes of these models may vary significantly. 
For example,  Koks et al. (2016) performed a quantitative comparative study of three 
different models ARIO, MRIA, and IEES (CGE-based), and evaluated the national-level 
economic losses of flooding scenarios in Italy. The results suggest that, for a given 
region, the difference between the loss estimates can vary up to a factor of seven 
depending on the model used and the recovery path. In most cases, the difference 
between MRIA and IEES (CGE-based) model loss estimates was less. However, the ARIO 
model overestimated the losses because of its linear nature and limited substitution 
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characteristics from other regions. In another study, Bachner et al., (2023) performed a 
multi-model analysis (a CGE based and an ABM-based model) to estimate the economic 
impacts of floods in Austria. The results of the CGE model and ABM model were leading 
to different conclusions. For example, for a 1 in 1000-year flood event, the CGE model 
estimated a reduction in GDP of about 2 % while on the other hand ABM model estimated 
a GDP growth. The study argued that CGE models assume all production factors are used 
optimally and hence the reconstruction activities had to be compensated by reduction 
of other activities in the economy. These results highlight the importance of 
understanding the model assumptions and the uncertainties around the economic 
impact estimates.   

3.6 Econometric methods 
Econometric models use past (historical) data to understand the impacts of 

disasters using regression analysis. A simplistic representation of an econometric model 
is shown via equation 𝑌𝑌 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏, where 𝑌𝑌, the dependent variable represents the 
economic measure of interest (e.g., gross domestic product (GDP), GDP per capita, GDP 
growth rate, per capita income) and 𝑋𝑋, the independent variable represents a measure 
of disaster intensity such as the number of disasters in a year, the direct damages, the 
number of casualties, the physical hazard intensities such as wind speed for hurricanes 
(Botzen et al., 2019). The coefficients 𝑎𝑎 and 𝑏𝑏 describes the nature of relationship 
between the economic measure and the disaster intensity and are one of the main 
outcomes of the analysis. Datasets such as EM-DAT (CRED, 2023) by the Center for 
Research on the Epidemiology of Disasters (CRED) and NatCatService (Munich Re, 2010) 
by MunichRe are available to estimate these coefficients. However, this method is 
statistically rigorous (Balakrishnan et al., 2022) and is focused on the impacts on 
economic growth (i.e., long-run impacts) rather than the short-term economic output 
(Cavallo et al., 2013). Few of the pieces of literature in econometric studies are discussed 
in detail. 

 Skidmore & Toya (2002) used the EM-DAT (CRED, 2023) dataset to study 
the relationship between disasters and the long-term economic growth of 89 countries 
over 30 years from 1960-1990. The study identified a positive correlation between the 
number of disasters and economic growth, indicating that disasters increase the GDP 
growth rates. Moving further, the analysis segregated the disasters and identified that 
climatic disasters are positively correlated and geological disasters are negatively 
correlated with economic growth. The authors justified that the disasters catalyze the 
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process of updating new technologies and thus result in positive economic growth. 
However, the disaster intensity measures from EM-DAT (CRED, 2023) are well correlated 
well with the GDP per capita (dependent variable of the analysis), because the disaster 
losses are greater in developed countries (Botzen et al., 2019). Future studies used 
physical intensities of hazards that are not subjected to this endogeneity bias. 
Felbermayr & Gröschl (2014) created a database of disaster events named ‘GeoMet’ 
where disasters were represented with physical intensities using geophysical and 
meteorological information. For example, the intensities of earthquake events were 
measured on the Richter scale and hurricanes with wind speeds. The study revealed that 
disasters have negative impacts on economic growth and also identified that the top 
one percent of worst disasters reduce the GDP per capita by 6.83 percentage points 
(arithmetic difference between percentages).   

Considerable interest had been shown in the past to understand the impacts of 
individual hazards on short and long-term economic growth (e.g., the impacts of 
hurricanes on economic growth).  Hsiang ( 2010) studied the economic impacts of 
increasing surface temperatures in twenty-eight Caribbean countries. The study 
reported that total production in agricultural sectors and non-agricultural sectors 
reduces by 0.1% and 2.4% respectively per degree (oC) rise in temperature. The study 
argued that increasing temperatures affect the labor forces via thermal stress which in 
turn can be attributed to the economic costs of climate change. Strobl (2011) 
introduced a hurricane disruption index by combining the damages, wind speed 
estimates, and exposure. The analysis suggested that the worst hurricane scenarios 
could bring down the county’s annual growth rate by 3.04 percentage points, which is 
nearly twice the county-level average growth rate. In addition, the study claimed that 
hurricanes being spatially very limited do not have a great impact on the long-run 
national growth rates. However, Hsiang & Jina, (2014) rejected the hypothesis that 
disasters increase growth or disaster losses disappear in the long run. They studied the 
GDP growth rates of the countries exposed to tropical cyclones between the period 
1950-2008. The study identified that hurricanes indeed affect long-term economic 
growth e.g., a 90th percentile hurricane event can reduce the per-capita income by 7.4% 
even after two decades. Dottori et al. (2018) evaluated the losses (human losses, direct 
damages, and indirect losses) from flooding at different levels of warming (1.5°C, 2°C, 
3°C) at the continental scale. The indirect losses were estimated using a global 
econometric model MaGE (Fouré et al., 2013). The model is recursive with time i.e., the 
economic impacts of a particular year will be reflected in its economic performances in 
the subsequent years. The study identified that advanced economies such as Japan 
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and North America are less affected whereas the highly populated countries like China 
would suffer greater indirect losses. In addition, the ratio of direct to indirect losses 
increases with warming e.g., indirect losses can be twice the direct losses with 3°C of 
warming. However, the study did not account for the ripple effects of international 
trade in its analysis. Hu et al. (2019) evaluated the flood impacts on the Chinese 
manufacturing sector via firm-level econometric analysis. Empirical data on labor 
productivity (i.e., the ratio of revenue to the number of employees) was collected from 
approximately 400 thousand firms over 8 years. A regression analysis combining the 
flood hazard and labor productivity data revealed that Chinese manufacturing firms are 
subjected to a 28.3% percent output reduction on average after a flood event.  The 
results of this econometric analysis were then fed into a Leontief I-O-based 
macroeconomic model to estimate the total output losses (12.3 % annual loss) in the 
Chinese economy.  

4. CI Failure in economic impact analysis 
Failure of critical infrastructure systems such as power, transport, water, etc. during 

disasters results in huge economic losses and disrupts the normal functioning of 
societies. Understanding the economic impacts of critical infrastructure failure is a 
complex task in hand because of the underlying interactions between infrastructure 
and businesses and so the economic sectors. Also, critical infrastructures are 
interdependent among themselves which elevates the complexity. The following 
section details a few selected studies that have considered the economic impacts of 
service disruptions from critical infrastructures particularly focused on energy, 
transport, port, and water infrastructures.  

4.1 Energy 
 Rose et al. (1997) analyzed the economic impacts of electricity disruption for 
simulated hypothetical earthquake scenarios in the New Madrid seismic zone, Memphis. 
This study used a 21-sector I-O table and divided the study area into 36 electric power 
supply areas (EPSA). EPSA zones were linked to the production sector using the 
population data per employment in each zone. The failure probabilities of substations 
(in each zone) were translated to their appropriate production output losses in each 
sector to perform I-O analysis. The resulting economic impacts do not account for the 
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business asset damages (e.g., buildings and factories where businesses are set up) 
which play a major role in total economic impacts and restoration. Also, the limitations 
of using a standard I-O model hold (see Section 3.3). Okuyama (2004) considers lifeline 
infrastructures such as electricity, gas, and sanitary services as separate sectors in the 
I-O table. The study examined the disruption in other economic sectors given a unit 
output reduction in lifeline sectors. Coupling the inputs of infrastructures under one 
sector, however, isn’t realistic since different CIs support businesses differently and the 
impacts of CI failure differ from one another (e.g., the factories are more resilient to 
telecommunication failure compared to power failure). Moreover, the spatial 
connections between infrastructures and industries are not taken into account. 
Anderson et al. (2007) evaluate the economic impacts of the 2003 NorthEast blackout 
event using the inoperability input-output (IIM) model originally developed by Haimes & 
Jiang (2001). The developed methodology utilizes the post-disaster data of electricity 
outages and links the outages to their economic output reduction. In addition to the 
existing limitations of the IIM model (see Section 3.4), the requirement of post-disaster 
outage data makes the methodology difficult to apply elsewhere.  

Recent studies have started prioritizing the importance of the geospatial spread 
of infrastructures and their connectedness with economic sectors in their analyses. For 
example, Garcia Tapia et al., (2019) considered a network graph model (i.e., nodes and 
edges) of New York City’s electrical grid and estimated the economic impacts using a 
simplistic (reduced GDP contribution of each sector) and rather unconventional 
approach. The inter-sector higher-order effects were ignored. Koks et al. (2019) 
developed a framework to understand business disruption losses of power 
infrastructure failure in the United Kingdom using the MRIA model (see Section 3.4). The 
results indicate that losses rise threefold when infrastructure failure is considered in the 
economic impact analysis which supports the need to consider the effect of 
infrastructure failure in economic impact models. However, the methodology only 
applies to single infrastructures whose service areas are assumed to be mutually 
exclusive (i.e., network redundancies cannot be modeled). Also, the connections 
between infrastructure assets and the beneficiaries (factories, households) were not 
modeled explicitly. 

4.2 Transport  
Santos & Haimes (2004) studied the cascading economic impacts of air 

transportation networks subjected to terror attacks using the IIM model. The results 
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indicated that sectors closely associated with air transportation (e.g., tourism, 
manufacturing, oil and gas) are likely to be more affected. Similar to Okuyama (2004), 
the study ignored the spatial connectedness of the air transport network and the 
economic sectors. However, later studies have understood the importance of 
considering the spatial distribution of transportation networks e.g., (Cho et al., 2015; Wei 
et al., 2018). In general, the structure of the proposed frameworks in these studies 
consists of a transportation network model, a cost model, and a macroeconomic impact 
model. The transportation network model captures the increased travel times (and 
distances) of freights and passengers caused by the disruption, the cost model 
estimates price changes of the commodities due to increased travel times (and 
distances) and the economic impact model takes these price changes as inputs and 
estimates the ripple effect among the other economic sectors.  
 Tirasirichai & Enke (2007) evaluated the indirect economic losses of damaged 
highway bridges subjected to a hypothetical earthquake using a regional CGE model. The 
study results indicated that the indirect losses are significant compared to the direct 
losses (i.e., damage cost of the highway bridges). In a similar study, Tsuchiya et al. (2007) 
analyzed the economic impacts of disrupted highways and railroads due to earthquakes 
in the Tokai-Tonankai region of Japan. The study models transport distributions of 
commodity flows and passenger trips, where the former represents the disruption of 
intermediate inputs to firms and the latter represents the business trips which are 
accounted as technical knowledge input to firms. Cho et al. (2015) developed a  model 
‘TransNIEMO’ by coupling the National Interstate Economic Model (NIEMO) with the 
highway network in the United States. NIEMO is a multi-regional I-O model with 50 regions 
(states) and 47 economic sectors. The price increase of delayed transportation of goods 
was converted to its corresponding reduced demand from the consumers. This study 
examined different disruption scenarios (e.g., bridge closures, tunnel closures) and 
identified that the economic impacts were moderate because of the inherent 
redundancy available in the transportation network.  

Colon et al. (2020) performed a criticality analysis (i.e., identifying the important 
components of a network) of the road network in the United Republic of Tanzania. This 
study took a modified approach by coupling each transportation network node with 
nodes of representative firms (of each economic sector) and households. This allows us 
to map the spatial linkages of supply chain activities at a network level. The results 
revealed critical roads of the network which are supply-chain specific. Also, the study 
identified that the indirect economic losses increase non-linearly with the increase in 
restoration time. The average losses corresponding to a two-week disruption is five 
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times higher than that of a week disruption. However, the developed frameworks in the 
above-mentioned studies are tailor-made to transportation networks and cannot be 
translated to other infrastructures such as power. International institutions such as the 
World Bank Group have invested considerable resources to understand the 
macroeconomic losses of transportation infrastructure failure in developing nations. Oh 
et al. (2019) studied the criticality, vulnerability, and risk of transportation networks in 
Vietnam subjected to floods and landslides. Freight flow disruptions affect the supply 
of inputs to the producers and reduce the demand for unavailable commodities. The 
resulting macroeconomic losses were estimated using multi-regional economic input-
output models proposed by Koks & Thissen (2016). The results indicated that the daily 
losses to road and rail networks can be up to 1.9 million and 2.6 million USD/day 
respectively. Also, the expected annual economic losses are likely to increase by 100 
percent by 2030. In a similar study, Kesete et al. (2021) analyzed the impact of floods on 
transportation network in Argentina.  The losses due to road failure can be up to 3.8 
million USD (for a network disruption of 10 days) which is likely to increase under future 
climate scenarios. Both the above studies emphasize the importance of targeted 
adaptation via cost-benefit analysis. 

Ports being the crucial channels of regional exports and imports have gained 
considerable interest in economic impact analysis. Rose & Wei (2013) studied the 
macroeconomic impacts of a 90-day shutdown of twin ports Beaumont and Port Arthur, 
Texas. The study applied a combination of demand-driven and supply-driven I-O models. 
While the demand-driven model was used to capture the demand reduction because of 
disrupted exports, the supply-driven model was applied to account for the lack of 
supply from imports to other economic sectors and households. In a similar study, Rose 
et al. (2016) analyzed the economic impacts of a port disruption using a CGE model at 
the Port of Los Angeles and Port of Long Beach California subjected to a Tsunami event. 
The total economic impacts were evaluated as the sum of property damages, impacts 
from trade disruptions, and evacuation costs. The building and content loss estimation 
data obtained from Porter et al. (2013) was translated as a percentage reduction of 
capital stock to be used in the economic impact model. The above two studies also 
evaluated the effect of alternate resilience measures such as re-routing, redistribution 
of exports, and so on. The results indicated that the resilience measures can reduce the 
economic impacts by more than 70%.  
 Thekdi & Santos (2016) provided a framework to identify the vulnerable economic 
sectors affected by port disruptions using the DIIM model (see Section 3.5.1). The 
framework was applied to the Port of Virginia subjected to various sudden onset 
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scenarios (e.g., hurricanes, dock worker strikes, and terror attacks). The study provided 
a decision-making chart based on the economic loss and inoperability of each sector 
resulting from the port shutdown, from which the vulnerable sectors can be identified. 
In another study, Verschuur et al. (2022) studied the criticality of ports in international 
trade and global supply chains. Over 1300 ports across 176 countries were selected for 
this study. The trade flows between ports were derived from multi-regional input-
output tables EORA-MRIO (Lenzen et al., 2017). The study identified critical (important) 
ports of the network via different metrics such as the ports’ contribution to global and 
regional output, port-level exports, and imports. Also, the study revealed that low-
income and small island countries are more dependent on port infrastructures for their 
trade activities. Very few economic impact studies have managed to consider this 
linkage between hazard and port downtime. Balakrishnan et al. (2022) proposed a 
methodology to analyze hurricane-induced port shutdowns and their associated 
economic impacts. The methodology is divided into two major sections; the first section 
focuses on the determination of the duration of port shutdown and the second section 
focuses on the economic impacts. Hurricane parameters such as landfall, distance from 
the eye, and intensity were used to develop the prediction model for port shutdown. 
The methodology is applied to the Texas port system and the economic impacts of 
hurricanes (of different return periods) were estimated. Verschuur et al.  
(2023) studied the global trade risks associated with port disruptions from climate 
extremes (e.g., cyclones, and flooding). The expected annual downtime of ports 
subjected to operational disruptions and climate extremes (Verschuur, Koks, Li, et al., 
2023) was combined with ship movement between ports, their freight flows, and global 
supply-chain datasets (EORA – MRIO, refer to section 8) to estimate the global trade 
impacts. The study estimated that the annual loss of port disruptions equals 81 billion 
USD, where cross-border effects (countries depending on foreign ports for trade) 
dominate in more than 80% of the countries. Fotopoulou et al. (2022) proposed a 
methodology for the system-wide seismic risk assessment of port facilities which 
considers the combined effects of ground shaking and liquefaction as well as various 
interdependencies among port elements, which affect the port’s operation and, 
consequently, the total risk impact. The systemic risk analysis of the port is carried out 
using as a performance indicator the reduction in the container and bulk cargo 
movements affected by the seismic performance of the piers, the waterfront, and 
container/cargo handling equipment, as well as their interaction with the seismic 
performance of the electric power system. The methodology, based on either 
probabilistic or deterministic scenario-based approaches, is demonstrated through an 
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application to the Thessaloniki port in Greece. The results of the probabilistic seismic 
risk assessment are illustrated in terms of annual probabilities of collapse and loss 
exceedance curves for each port component as well as normalized performance loss for 
the whole port system for the container and cargo terminal. 

4.3 Water Supply 
 Rose & Liao (2005) analyzed the economic impacts of water supply disruption in 
the Portland metropolitan area subjected to earthquakes. The study area was divided 
into nine service areas and coupled with economic sectors using a similar method 
adopted by Rose et al. (1997). The study used a CGE model where water is considered as 
a separate input in the firm’s production functions explicitly to facilitate the analysis. 
Also, this formulation allowed us to parametrically model the different resilience 
measures such as water conservation, substitutability, backup supplies, and so on. In 
another study, Rose et al. (2011) evaluated the regional economic impacts of water 
supply disruption in Los Angeles subjected to a Verdugo scenario earthquake. The study 
identified that the economic losses can be countered up to 90% with appropriate 
resilience measures. 

5. Economic impacts in a multi-hazard 
context 

The impacts of consecutive multi-hazard events differ greatly from impacts that 
have been analyzed as multiple independent single-hazard events, primarily because of 
the existing inter-relationships between the hazards, the recovery dynamics, and the 
economic dependencies (Hochrainer-Stigler et al., 2023). For example, Japan in June 
2018 suffered from major flooding and landslide events. Before the complete recovery 
of the system, two other extreme events followed (a heatwave in July and typhoons in 
August) within 2 months making the impacts even worse. Conventional impact modeling 
approaches are not fully equipped to model the above interactions (Argyroudis et al., 
2020; Ruiter et al., 2020).  

There has not been much attention given to understanding the economic impacts 
of multi-hazards (Zeng & Guan, 2020). Very few studies exist. For example, Zeng & Guan 
(2020) proposed a methodology to estimate the indirect economic impacts of a 
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hypothetical scenario of consecutive flood events of the same impact, with one week 
being the occurrence time between these events. The method applied the ARIO model 
for economic impact analysis. The results indicated that the losses can be twice the 
losses had they been considered as single disasters. Using a similar methodology, Hu et 
al. (2023)  studied the economic impacts of a flood event and a pandemic (biological 
hazard) control occurring concurrently. Verschuur et al. (2023) evaluated the trade and 
economic losses of global port infrastructure subjected to several multi-hazards such 
as earthquakes, cyclones, floodings, and operational failures. However, this is an asset-
level risk analysis and does not consider the interactions between the hazards (e.g., 
consecutive events, cascading events).  

Also, macroeconomic impact models are not intended to provide precise estimates 
but rather serve as tools for generating preliminary insights into the potential cascading 
effects of supply-chain disruptions during disasters. These models incorporate various 
parameters, including the behavioral patterns of economic agents, which vary 
depending on factors such as the nature of the hazard, its intensity, and regional 
disparities. The complexities of these models are further amplified in a multi-hazard 
context, where the spatial and temporal overlap of different hazards introduces 
additional layers of uncertainty and complexity. Consequently, these models should be 
interpreted as indicative rather than definitive assessments of disaster impacts. 

6. Economic Validation of CI impacts on 
disasters 

Empirical evidence of impacts after disasters is essential for the development and 
validation of macroeconomic impact models (or any disaster impact models). This 
includes the data on asset damages (e.g., damage to infrastructure assets, damages to 
different classes of buildings), service outages experienced by consumers, business 
downtime, and the recovery of damaged assets and businesses. This data can be used 
to substantiate the model results/outcomes and also if required, aids in the calibration 
of relevant model parameters. However, there is limited availability of such validation 
data (Koks et al., 2022; Verschuur et al., 2020). Further, the task of validating a 
macroeconomic impact model possesses additional complexities. In most cases, the 
impact on regional supply chains extends beyond the disaster-hit regions via imports 
and exports (i.e., multi-regional spillover effects). In addition, the data on the behavior 
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of economic agents (producers and consumers), the change in production capacities 
and demands, the inventory capacities, and, the recovery duration of business assets 
are either not available or difficult to obtain.  

In the past, very few studies have attempted to validate the macroeconomic impact 
estimate from their models. For example, Kajitani & Tatano (2018) studied the short-run 
economic impacts of the 2011 East Japan earthquake and tsunami using a CGE model. 
The study utilized the monthly observed data of the Index of Industrial Production (IIP – 
a measure of production levels of economic sectors) of manufacturing sectors to 
validate the results. The model overestimated the production levels in the post-disaster 
scenario, however, the trend of monthly estimated IIPs is consistent with the observed 
IIPs spatially (across different regions) and temporally.  Alleman et al. (2023) validated a 
dynamic I-O model which models the supply-chain impacts of the COVID-19 pandemic in 
Belgium. The model results were validated using different indicators of the economy 
such as the Gross domestic product, Employment, Business to Business transactions, 
and Revenue, observed quarterly (for four quarters of the year from 2020-Q2 to 2021-
Q1).  

In a recent study, Koks et al. (2022) compiled the critical infrastructure impacts of 
the 2021 mid-July Western European flood event in Germany, Belgium, and the 
Netherlands. The study provided the first-of-its-kind estimates of infrastructure asset 
damages and recovery durations for six different infrastructure classes (transport, 
energy, water, telecommunication, healthcare & education, and solid waste) across the 
three countries. This can be used as validation material in future CI risk studies. 
Interestingly, much of the information/data had been compiled via online articles and 
reports published near the time of the disaster. This method of data collection proved 
to be efficient and should be applied to future disasters as well by regional agencies 
and institutions. Particularly, the data on the recovery of infrastructures and businesses 
is crucial for modeling the macroeconomic impacts of disasters.  

 

7. Uncertainties in CI systemic risk modeling 
Understanding the uncertainties involved in a risk analysis is crucial. Uncertainties 

can emanate from the input data used, selected model parameters, and so on. Broadly, 
the uncertainties can be classified into two major categories: (i) aleatory (inherent 
randomness in the system) e.g., future trade flows between different regions and 
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sectors, and (ii) epistemic (lack of knowledge/data) e.g., lack of recovery data to 
quantify the model parameters. Several researchers have emphasized the inclusion of 
uncertainties in systemic risk assessments. For example, Rose (2004b) stated that using 
deterministic estimates to discuss the results of risk analysis is an exaggeration of 
certainty. Such deterministic modeling estimates may lead to faulty policies and 
decision-making (Santos et al., 2022). This section discusses the uncertainties in 
systemic risk modeling associated with CI data availability and economic impact model 
parameters.  

Data availability of critical infrastructure asset locations, their specific functions, 
and interconnections are some of the hindrances in CI risk studies. This has resulted in 
studies undertaking more simplified approaches to model the CI networks. In recent 
years, many efforts have been made to improve the data availability of transport and 
power infrastructure systems. Around 80% of the global road network is available via 
OpenStreetMap (OSM) (Barrington-Leigh & Millard-Ball, 2017). Similarly, global datasets 
on power infrastructures are being developed (Arderne et al., 2020). However, there is a 
severe lack of data availability for certain infrastructures such as water supply systems 
(Koks, 2022). Economic impact analysis without complete data on CI assets will lead to 
inaccurate loss estimates. Similarly, the values of the parameters of economic impact 
models (e.g., elasticity coefficients (CGE), adaptive behavior parameters) sometimes 
have very little/ no real-time data to be backed up. Studies have attempted to quantify 
these uncertainties via Monte Carlo simulations and sensitivity analysis. Tirasirichai & 
Enke (2007) made 1,00,000 iterations of the model with a set of different elasticity 
coefficients and presented the mean estimates of indirect impacts. Tsuchiya et al. 
(2007) performed a sensitivity analysis to understand the effect of intra-region 
commodity transit times on the loss estimates. The analysis revealed that even when 
the intra-region transit times are doubled, the losses change only by a lesser extent 
(increases approximately 10%). Similarly, Hallegatte (2008) understood the influence of 
ARIO model parameters via sensitivity analysis. For example, the overproduction 
parameters of the model, namely the overproduction capacity and overproduction 
characteristic time (i.e., the time required to reach the overproduction capacity) were 
subjected to sensitivity analysis. Four different sets of these parameters were chosen. 
The effect of overproduction capacity on the output losses was stronger compared to 
the overproduction characteristic time. With a fifty percent increase in production 
capacity, the pre-disaster output levels were attained within 2 years, whereas a twenty 
percent increase in production capacity takes 6 years for the same. However, in the 
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range between 3 and 6 months, the overproduction characteristic time did not have a 
greater effect on the output losses. 
 

The lack of recovery data of economic systems after disruptions increases the 
uncertainty in impact estimates using dynamic models. For example, Koks & Thissen 
(2016) observed that the increase in recovery duration can increase economic losses 
greatly. Recent studies have made progress in quantifying the recovery time of 
businesses after earthquake and hurricane disruptions e.g., (Liang et al., 2023; K. Liu et 
al., 2021) Also, the elements of the I-O tables (i.e., the transactions between economic 
sectors) may be uncertain. Santos et al. (2022) modeled the columns of the coefficient 
matrix (see Section 3.1) using a Dirichlet distribution. The results were presented using 
a box and whisker plot indicating the minimum, 25th percentile, 50th percentile, 75th 
percentile, and maximum economic loss estimates corresponding to each sector. For 
example, the manufacturing sector had a greater uncertainty around its loss estimates 
compared to other sectors. From a modeling perspective, this method of presenting 
results with confidence intervals is valuable, as it highlights the uncertainties arising 
from different assumptions made within the model. Also, this enables the decision-
makers to understand the whole spectrum of anticipated economic losses and frame 
appropriate policies considering the uncertainties. 

8. Data usage for economic impact modeling  
The following datasets are required to estimate the macroeconomic impacts of 

CI due to natural hazards a) asset locations of critical infrastructures (e.g., power 
substations, railway stations) and business assets (e.g., industrial buildings, mines) b) 
vulnerability data of assets (i.e., models that estimate the damage to the asset for a 
given hazard intensity) c) network flow data d) data on flow of goods and services 
between different economic sectors and e) the recovery data (recovery duration of 
assets after hazards). Deliverable 1.1 presents a review of the existing exposure data of 
critical infrastructures and the vulnerability data/studies available for different hazards 
such as floods, earthquakes, landslides, wildfires, and hurricanes. Deliverable 2.1 reviews 
different datasets available for CI interdependency modeling. Further, this section 
focuses on the available multi-regional trade datasets.  

Data on the flow of goods and services (e.g., I-O tables, Supply, and Use tables) 
between different sectors and regions is an essential requirement to perform economic 
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impact analysis. They reflect the supply and consumption patterns of economic sectors 
and other economic agents (e.g., households, and governments). In addition, multi-
regional datasets reflect the trade relations and dependencies of economic sectors in 
different regions. Within MIRACA, the RHOMOLO V4 dataset will be used. It consists of 
multi-regional supply and use tables for 306 NUTS-2 (Nomenclature of Territorial Units 
for Statistics application) regions of the European Union. This inter-regional dataset is 
derived from intercountry Input-Output tables from Eurostat, also popularly referred to 
as FIGARO tables. Also, input-output datasets are available at a global scale reflecting 
the inter-sector and intercountry dependencies. For example, the GTAP (Global Trade 
Analysis Project) dataset consists of multi-regional I-O tables covering 141 countries 
that contribute to 99.1% of global GDP (96.4% of the world’s population). EORA-MRIO is a 
similar global-level dataset covering 190 countries. The above-mentioned datasets have 
been widely used in economic impact studies. The following table provides an overview 
of the datasets discussed above. 

 

Table 2.  A comparison of the existing datasets that describe the inter-sector trade 
relationships between different regions/countries 

Sl. 
No Characteristics RHOMOLO - PBL GTAP EORA-MRIO 

1. Abbreviation - 

 
Global Trade 

Analysis Project 
 

Multi-Regional Input 
Output 

2. Scale Europe Global Global 

3. Sectors 56 65 25 

4. Regions 

 
306 ( NUTS-2 
regions of EU) 

 

- - 

5. Countries 

 
28 (one rest of the 

world) 
 

141 187 / 190 

6. Source 

 
Garcia-Rodriguez et 

al. (2023) 
 

Aguiar et al. (2022) Lenzen et al. (2013) 
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7.  Latest version RHOMOLO V4 GTAP v11 Eora26 

8.  Base Year 2017 
 

2004, 2007, 2011, 
2014, 2017 

1990-2022 

9. Conclusions and Future directions  
In this deliverable (WP3 – D3.1), we conducted an extensive review of systemic 

risk assessment, particularly focused on the macroeconomic impacts of natural hazards. 
Different approaches to modeling macroeconomic impacts such as the input-output (I-
O) method, computable general equilibrium (CGE) method, hybrid models, and 
econometric models were discussed along with their relevant studies in tandem. In 
addition, we reviewed several studies that estimate the macroeconomic impacts of 
critical infrastructures (e.g., energy and transport), datasets of multi-regional trade, and 
the uncertainties of macroeconomic impact modeling. Through this review, we 
acknowledge that a significant amount of research has been undertaken in the 
development of macroeconomic impact models and multi-regional trade datasets. 
However, we identify several areas of improvement within the existing frameworks which 
can be addressed via MIRACA. 

The existing frameworks can be improved profoundly by spatial integration of the 
critical infrastructures with the macroeconomic models. A major fraction of the existing 
economic impact studies do not consider the service disruptions from infrastructure 
failure during natural hazards. Even if considered, they do not model the spatial (e.g., 
power systems spatially connected to the factories) and economic (e.g., power system 
shutdowns resulting in downtime losses in factories ) linkages between infrastructures 
and the economic sectors. For example, most of the studies model economic disruptions 
via simplified assumptions such as the percent reduction in physical damage equals the 
percent reduction in output of an economic sector (Rose et al., 2016), the population 
affected as a proxy (Willner et al., 2018) and so on. As shown in Fig.2., infrastructures 
back up the business assets (i.e., factories and households) in their day-to-day 
activities. During natural hazards, these business assets face service disruptions from 
their supporting infrastructures resulting in downtime. This downtime loss is translated 
into its corresponding economic sector to which the factory or household contributes. 
Within MIRACA,  we plan to focus on modeling this realistic pathway of failure 
propagation which incorporates the fragility of infrastructures and business assets 

https://publications.jrc.ec.europa.eu/repository/handle/JRC132883
https://www.gtap.agecon.purdue.edu/
https://worldmrio.com/
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toward natural hazards. However, this requires the development of advanced models 
(built with modularity) developed over state-of-the-art datasets as discussed in 
Section 8. We plan to extend the existing MRIA (Koks & Thissen, 2016) macroeconomic 
model with additional modules that link asset and network-level functionality losses to 
production losses in sectors. MRIA (refer to Section 3.5.3), an optimization-based 
approach can be used to estimate both supply and demand side impacts with 
interregional substitution capabilities. These additional modules will serve the following 
purposes: (i) spatially connect the critical infrastructure assets with business assets 
(e.g., factories), (ii) the downtime of the businesses will be linked to the production 
capacities of the economic sectors.  

Critical infrastructures such as telecommunications, water supply, and health 
services are not given due importance in economic impact studies. Very few or no 
studies exist. For example, in the modern world, infrastructures such as 
telecommunication are as vital as infrastructures such as power and transport, where 
internet disruption in days can potentially disrupt business operations in many sectors. 
Hence, infrastructure owners and governments are in need to understand the systemic 
risks of such infrastructures. Also, there is a lack of a unified framework to understand 
the macroeconomic impacts of different infrastructures. Within MIRACA, we intend to 
develop a unified framework that can apply to all infrastructures by linking the 
infrastructure assets with their economic sectors. Also, the CI interdependency 
modeling methods developed in WP2 will be used in the framework. The developed 
framework will be used to estimate the macroeconomic impacts of telecommunication 
and health service disruptions within use cases 3 and 4.  

Next, the lack of data and unknowns in infrastructure systems, business 
operations, and recovery prove to be a major hindrance. Many studies have emphasized 
that economic impacts are proportional to the recovery duration of the system. 
However, the lack of recovery data increases the uncertainties in the impact estimates. 
Similarly, economic impact models have improved significantly to take into account the 
adaptive behaviors of agents e.g., inventory capacity, rationing the supply. However, 
they cannot be backed up by real-time data forcing the researchers towards sensitivity 
analysis (exploring different model parameters and their impacts). Global/national 
organizations along with economic agencies should increase their efforts to conduct 
surveys and collect appropriate data on the recovery and adaptive behaviors of 
business agents in post-disaster scenarios. Within MIRACA, we intend to reduce this gap 
through stakeholder (e.g., KPN) consultation in different use cases. Also, we plan to 
understand the recovery process at different time scales such as the stagnation period 
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after the hazard, the restoration of infrastructure services, and the restoration of 
businesses.  

Finally, with multi-hazard events being more evident, existing frameworks do not 
consider the economic impacts of multi-hazard scenarios. In addition, most of the 
existing economic impact modeling frameworks are not equipped to handle the model 
uncertainties inherently (deterministic approaches). Within MIRACA, we extend the 
framework to understand the economic impacts of cascading and consecutive multi-
hazard events. Also, we plan to identify the important uncertainties in these frameworks 
and quantify them. To summarize, this review identified several research gaps in the 
existing macroeconomic impact modeling frameworks that can be further improved in 
MIRACA. We believe the improved methods will deliver insightful results to the decision-
makers in understanding the macroeconomic impacts of CI failure in Europe.  
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